On the World Health Organization’s target list for eradicating disease, hepatitis C is currently among the most wanted. An estimated 71 million people live with the viral liver disease globally, and 1.75 million new infections occur every year. Yet there is reason for optimism, as new treatments, preventative measures, and, perhaps soon, vaccines create novel strategies for driving down infection.


With a $4.7 million grant from the National Cancer Institute, the University of Chicago’s Globus and leading cancer researchers at University of Chicago Medicine will build new protected cancer research networks that enable collaborations while keeping sensitive health data secure and private.


Veterans will be the ultimate winners in the U.S. Department of Veterans Affairs-Department of Energy (DOE) Big Data Science Initiative, a collaborative research effort that casts Argonne National Laboratory in a prominent role. Argonne’s extensive track record of successes with big data and big computers make it the quintessential partner of this multi-faceted research team to improve healthcare for millions of veterans, advance supercomputing and solve some of the nation’s biggest scientific challenges. A team led by the Computation Institute's Rick Stevens, associate laboratory director for Computing, Environment and Life Sciences at Argonne, was instrumental in moving the effort from concept to reality.



CSGID applies state-of-the-art high-throughput (HTP) structural biology technologies to experimentally characterize the three dimensional atomic structure of targeted proteins from pathogens in the NIAID Category A-C priority lists and organisms causing emerging and re-emerging infectious diseases.

modENCODE project

The goal of the modENCODE project is to provide the biological research community with a comprehensive encyclopedia of genomic functional elements in the model organisms C. elegans and D. melanogaster. modENCODE is run as a Research Network and the consortium is formed by 11 primary projects, divided between worm and fly, spanning the domains of gene structure, mRNA and ncRNA expression profiling, transcription factor binding sites, histone modifications and replacement, chromatin structure, DNA replication initiation and timing, and copy number variation.

SEED logo

With the growing number of available genomes, the need for an environment to support effective comparative analysis increases. The original SEED Project was started in 2003 by the Fellowship for Interpretation of Genomes (FIG) as a largely unfunded open source effort. Argonne National Laboratory and the University of Chicago joined the project, and now much of the activity occurs at those two institutions (as well as the University of Illinois at Urbana-Champaign, Hope college, San Diego State University, the Burnham Institute and a number of other sites).

Researcher Spotlight